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ABSTRACT

A technique that integrates applications of wavelet packets
and principal component analysis is developed. This techni-
que is applied for the purpose of detecting anomalies in
Fourier Transform Infrared (FTIR) interferograms. An ex-
perimental example is given to demonstrate the performance
of this technique.
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INTRODUCTION

In recent years, wavelets have found their way into many different
fields of science and engineering. Wavelets constitute a family of functions
constructed from dilation and translation of a single function called the
mother wavelet. They possess several useful properties, such as orthogon-
ality, compact support, and exact representation of polynomials to a certain
degree. Also, they are able to produce localization in the wavelength and
frequency domains, locate and identify significant events, detect and localize
various types of disturbances and to represent functions at different levels of
resolution (i.e., multiresolution).!"! For example, wavelet multiresolution
analysis is applied to the solution of a magnetic inverse problem and used to
obtain a good estimation of the permeability profile,!”! and the production of
best image fusion.”! Furthermore, best wavelet bases are used for the
compression of magnetic resonance images,”! delay and Doppler estima-
tion,®! and implementation of a time-varying matched filter and its appli-
cation to the inverse synthetic aperture radar.!®’ An entropy-based algorithm
for best wavelet basis selection is presented in,[”) and alternatively a method
that is based on rate-distortion sense is developed in®® for the selection of
best wavelet packet bases.

In the applications of spectroscopy for monitoring chemical processes
and calibration of chemical systems, an understanding of the various che-
mical process mechanisms and measurement procedures that contribute to
the analysis and implementation of such processes and system performance
is important. Accordingly, statistical multivariate approaches have been
developed for and utilized in such applications.”~'>! In particular, multi-
variate approaches are used to achieve reductions in spectral noise levels,”
detect instrument variations,!'” identify sources and natures of spectral
disturbances,!'*!'¥ and detect sensor faults.!'> Furthermore, the advantage
in using multivariate approaches is seen when a principal component ana-
lysis (PCA), which is a statistical multivariate approach, is used to treat all
process variables simultaneously. In this case many of the limitations of
classical statistical processes such as the ones presented in!'® are cir-
cumvented.'>'"] PCA is a technique that transforms a number of related
variables to a set of uncorrelated variables. It can be used as a data
reduction technique and a diagnostic tool or a control device.!'” Moreover,
PCA is performed in the wavelets domain to improve spectral features
classification,!!” and to detect and identify spectral anomalies due to
material aging.!"8 It is concluded in"® that the integration of wavelet pro-
cessing with techniques from multivariate statistical process control pro-
vides a useful means of localizing, detecting, and identifying spectral
disturbances.
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Analyses of interferograms are performed for many scientific benefits.
For example, these analyses are used to determine the optical constant of a
thin film,""®! to measure surface depth at nanometer scales,”Y to retrieve the
refractive-index of fibers®!! and for the measurement of atomic oscillator
strengths and atomic energy level populations.”? The analysis of the
interferograms is performed using Fourier transform,”®?* Green’s func-
tion,”¥ an error function,”* a phase-resolved correlation method®”! and a
wavelet method.!*®)

In conjunction with the methods of identifying spectral disturbances, a
technique is proposed in this article. This technique utilizes wavelet packets
and PCA to identify the presence of anomalies in interferograms.

The sections of this article are organized as follows: A summary about
wavelet packets is given in Sec. 2. The proposed technique is outlined in
Sec. 3. In Sec. 4, an experimental example is given to illustrate the perfor-
mance of the proposed technique.

Wavelet Packets

Wavelet packets are a generalized family of multiresolution orthogo-
nal or biorthogonal basis that include wavelets. The wavelet packet method
is a generalization of wavelet decomposition that offers a richer range of
possibilities for signal analysis. In wavelet analysis, a signal is split into an
approximation and a detail. The approximation is then itself split into a
second-level approximation and detail, and the process is repeated. For an
n-level decomposition, there are n+1 possible ways to decompose a signal.
In wavelet packet analysis, the details as well as the approximations can be
split. This yields more than 22" different ways of decomposition and, as a
result, a wavelet packet decomposition tree is developed.'*! Several cost
functions are useful for the development of the best decomposition tree for a
given signal, and one of the most attractive is Shannon entropy.” All
families of wavelets are applicable in the technique that is proposed in this

article, examples of such families are,

Daubechies wavelets with family members: db1-db10
Symlets wavelets with family members: sym2-sym8
Coiflets wavelets with family members: coif 1-coif 5
A discrete approximation of Meyer wavelets

Haar wavelets

Moreover, using Shannon entropy, an algorithm for developing the
best decomposition tree for a signal (S) is utilized by the technique that is
presented in this article. This algorithm is as follows:[”
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(a) Choose / as the maximum number of levels of decomposition.
(b) While the level of decomposition is less than /, do the following:

e Let the jth signal at the ith level be S;;, calculate Shannon
entropy of this signal, n(S;;),i < /.

e Decompose §; ;into two signals, Siy1 , and Sy x, and compute
their corresponding Shannon entropy, 1(Sit1,4) and 7(Sit1 ),
i+1<L

o If n(Sij) > n(Sit1,4) +n(Sit14) then retain Sy, and Siyig,
continue decomposing. Otherwise retain S;; and stop.

An example of a best decomposition tree for S is shown in Fig. 1. The
branching or non-branching of every signal in this tree is dictated by
Shannon entropy. Computation of Shannon entropy has permitted the
branching of the signal S; | to S, and S»,, however, it did not permit the
branching of the signal S, ;.

Interferograms Analysis Technique

For the purpose of presenting the proposed technique we consider, A4,
a set of FTIR interferograms of a given pure material. In addition, we

| / \S
. S/\S

S S

2 2.2 2.3 2.4

N

3.1 3,2

Figure 1. Example of best decomposition tree for a signal S.
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assume that these interferograms are with no anomalies and they are gen-
erated independently [model interferograms!'®)]. This set is represented as:

A={N,n,.. . IN} (1)

where the total number of the members in this set is “N’” and /i represents
the ith interferogram in this set. In addition, we consider the set B as:

B={It} (2)

where It is the only member in this set. /f is a FTIR interferogram repre-
senting the same material, however, tested for minute anomalies due to
contaminations [tested interferogram!"®]. Accordingly, the proposed tech-
nique for the analysis of interferograms is outlined as follows:

3.1

Any one of the families of wavelets listed in Sec. 2, along with the
Shannon entropy algorithm outlined in the same section, is used to generate
the corresponding best decomposition trees for the members of the sets 4
and B. Without loss of generality, let Coiflets wavelet (coif 1-coif 5) be the
family that is utilized. The first family member, coif1, is applied first to
11,12, K, IN and It. The resulting best decomposition trees and their cor-
responding signals are listed symbolically in Table 1. In this table, the
subscripts in the symbols of the best decomposition trees (first column)
indicate correspondence to interferograms on which the decompositions
were performed. The superscripts in the symbols of the decomposed signals

Table 1. Symbolic Listing of Best Decomposition Trees and Their Corresponding
Branching Packet Signals

Best Decomposition Tree Branching jth Signals at the ith Decomposition Level

coif IBD Ty, coif IS} 1, i1 =1,2,3,..., j1=1,23,...
coif 1BDTp coif 1S5 5, 2=1,2,3,..., 2=1,2,3,...
coif IBDTp3 coif 1SR 5, 3=1,2,3,..., 3=1,2,3,.

coif IBDTx coif ISl ., IN=1,2,3,..., JN=1,2,3,...

coif IBDT}, coif ISY . it=1,2,3,..., jt=1273,...
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(second column) indicate correspondence of these signals to interferograms
on which the decompositions were performed. The first subscripts in the
symbols of the decomposed signals are decomposition levels and the second
subscripts are numerations of the decomposed signals.

3.2

Assuming that the first signals of the 1st row and the last row of
Table 1, i.e., coif1S]| and coif1S!, exist due to Shannon entropy, they are
compared for branching or non-Branching. If they behave similarly then
they are ignored otherwise they are retained as a mismatched pair. This
procedure is repeated for all the signals, which exist due to Shannon
entropy, from the Ist row and their corresponding signals with same sub-
scripts from the last row of Table 1 and all mismatched pairs are retained.
These mismatched pairs are used to formulate a “mismatched” set, Rlmm.
This set is given symbolically as:

Rlmm = {mml,mmly,mmls, ... mmlgiy} (3)

where mm1y, is the kth member of the set and R1M is the total number of the
mismatched pairs. These mismatches represent dissimilarities between the
model and tested interferograms and these dissimilarities are manifested in
the wavelet domain through the multiresolution and localization properties
of the wavelet packets. The same procedure is repeated for the 2nd, 3rd, 4th,
.., and the Nth row of Table 1 where for every row the corresponding
mismatched set is formulated. These sets are represented symbolically as:

R2mm = {mm2,,mm2y, mm2s, ... mm2ront,
R3mm = {mm3,,mm3y,mm3s, ..., mm3p3p},
RNmm = {mmN;, mmN,, mmNs, ... mmNgNy}-

Each element in sets Rlmm, R2mm,K, RNmm is a pair of mismatched sig-
nals. The indices of the signals of each pair are the same and they corres-
pond to the jth signal at the ith tree level. The first signal of this pair
corresponds to a model interferogram and the second corresponds to the
tested interferogram. Next, only elements with the same indices that appear
in all the sets Rlmm, R2mm, ..., RNmm are retained and grouped. A sym-
bolic presentation of the (i,j) group is:
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(coiflSl“/, coiflS{fj), (coiflS,’Z/, coiﬂS,{"/), ceey

. (4)
(coif 1S, coif1S]";)

ijo

Next, the first signals from each pair of signals in the group G; ; are used to
form a set that corresponds to the model interferograms, symbolically this
set is presented as:

setl; ; = {coiflSI1 coif1S”

1 GIN
i l/,...,COIflS“ (5)
and the arithmetic mean of all the second signals of the pair of signals in the
group G, ; is computed and used to form a one element set that corresponds
to the tested interferogram, symbolically this set is presented as:

ser2; ;= {amcoif1S]';} (6)

3.3

The elements of the set setl;; are used to develop a PCA model,
PCAcoifl S1 (2] This procedure is repeated for each developed group. As a
result, a famlly of PCA models is developed which belongs to coif'1. This
family is named symbolically as PCAcoif 1S!. The number of the members
of this family is equal to the number of the elements that have the same
indices and appear in all the sets Rlmm, R2mm, K, RNmm. Each member
from the family PCAcoif 1S’ is used to test for the existence of a localized
anomaly in the tested interferogram.

34

Information from PCA model PCA cozflS‘ which is a member of the
PCAcoif1S' family, is used to test for existence of anomalies in the jth signal
at the ith level of the best decomposition tree of the tested interferogram.
This is performed as follows:

3.4.1

The Q-limit of the PCA model PCAcozflS is calculated using the
following equations:!!*!®
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0 = Zp: ly (7)

q=r+1

Y 0

q=r+1

Y ©

q=r+1
20,05
ho = 1 — 217 10
hov/205 Oxho(hy — 1 o
0 — o, |20 Oaholho —1) (11)

0, 0

where Q is the Q-limit, ¢ is an approximately normally distributed function
with zero mean and unit variance and /, is the gth eigenvalue of the p x p
covariance matrix of PCAcoifl S’ for Wthh this limit is calculated.['? In the
process of principal component ana1y51s weights are assigned to the eigen-
values of the covariance matrix.!'? These weights are used to discard r out of
p eigenvalues,'?"

342

The principal components of PCAcozflS . are used to compute its
Q-Values.!'”

343

Values of the indices of PCAcoiﬂS}_’ ; are used to select the corre-
sponding signal from set set2; ; given in equation [6]. This signal is combined
with PCAcoif1S]; to form a modified version of PCAcoif1S;; and labeled
MPCAcozflS1 [12] The principal components of MPCAcozﬂS are used to
compute its Q leues [12.18]
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344

Q-values that were generated in steps 3.4.2 and 3.4.3 are compared
with the Q-limit that was generated in step 3.4.1. Q-values that exceed this
Q-limit are indications of existence of localized anomalies in the tested
interferogram.!?

345

Steps 3.4.1, 3.4.2, 3.4.3, and 3.4.4 are repeated for all family members
of the PCA model PCAcoif1S! and their corresponding tested interferogram
localized anomalies are identified.

3.5

Steps 3.2 and 3.3 are repeated and the PCA models PCAcoif2S’,
PCAcoif3S!, PCAcoif4S" and PCAcoif5S" are generated.

3.6

Step 3.4 is repeated for all PCA models generated in step 3.5. As a
result all localized anomalies for the tested interferogram are detected.

Experimental Example

A Nicolet 750 Fourier Transform Infrared spectrometer was used to
generate 20 interferograms of pure acetone. These interferograms were
labeled 71,12,...,120. Five hundred parts per million of diesel fuel was
added to this pure acetone, and the same spectrometer was used under the
same conditions to generate an interferogram of the contaminated acetone.
This interferogram was labeled /. The interferograms /1 and It are shown in
Figs. 2 and 3, respectively. The proposed technique was applied and best
decompostion trees were generated using the Coiflets wavelet family. For
illustration, the best decomposition tree of 71 due to using Coifl,
coifIBDTYy, is shown in Fig. 4 and that of Iz, coifI BDT},, is shown in Fig 5.
It is noted from these two figures that the only mismatched pair of signals
is (coif1S1,, coif1S™)). Using Coif2, Coif3, Coif4, and Coif5, the corres-
ponding best trees were generated. These trees and their corresponding
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Figure 2. Interferogram of acetone with no anomalies.
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Figure 3. Interferogram of acetone with anomalies.

mismatched pairs of signals are listed symbolically in Table 2. Tables similar
to Table 2 were generated for 12 through 120 along with /7. In the case of the
first wavelet packet family member, coifl, the signals coif1S{!, through
coif15™ were used to develop the corresponding PCA model, PCAcoifl S{‘l
and eqhations [7] through [11] were used to calculate its Q-Limit.!'? Its
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11
/ \
Coif 1S,
/
Coif 15, Coif 18,
PR Y
Coif1S,.  Coif1S], CoiflS;, CoiflS,,
S S
Coif 1S, Coif1S,, CoiflS;, Coifls§/,
e 1

Coif1S  Coif1S;, Coif1S,, Coif1S!,

Coif 1S,

Figure 4. Best tree of I1 (coif 1BDTpy).

It
N
Coif 1S, Coif 1S,

Figure 5. Best tree of It (coif 1BDTYy,).

Table 2. Mismatched Pairs of Signals from Best Decompostion Trees of 71 and Iz of
the Experimental Example

Best Decomposition Trees Mismatched Pairs of Signals
coif2BDTyy, coif2BDTY, (coif 281, coz’]‘ZS{fl)
coif3BDTyy, coif3BDTY, (cog’f3S{!, , coij‘3S{f1 ), (cozf3S§¥4, cog’fBSé’A),

(coif 38345, coif 3S%). (coif 384, coif 3547)
(coif 384, coif 3SYy)

coifdBDTyy, coifABDT, (coif4St,, coif4S{fl ), (coif4Sty, coifdS%,)

coif SBDTyy, coif SBDTY, (coifSSﬂ1 , cog’fSS{{1 ), (calfSSQé, coifSSé‘b)
(coif58%, coif5S%y)

principal components were used to calculate its Q-Values.'” Next, the
arithmetic mean of the second signals from this mismatched pair,
amcoifl S{fl, was combined with this PCA model and MPCAcoif1S; was
developed. Its principal components were computed and used to generate its
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Figure 6. Q-Limit and Q-Values corresponding to PCAco[flS{‘, PCA model.

Q-Values.'” The Q-limit and both Q-Values are shown in Fig. 6 where the
detection of a localized anomaly is indicated. This procedure was repeated
for every mismatched signal presented in Table 2 and plots similar to the one
presented in Fig. 6 were produced for all localized anomalies.

CONCLUSION

Through an experimental example it is demonstrated that a technique
proposed in this article that combines the applications of wavelet packets
and principal component analysis provides a useful means for the detection
of anomalies in interferograms. This technique makes use of the localization
property of wavelet packets and Shannon entropy criterion where
signal multiresolution decomposition is used to represent these inter-
ferograms. This technique is applicable to spectroscopy testing and
measurements.
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